

Gear 1.9.4

[image: _images/GEAR.svg]
 [https://travis-ci.com/nicolae-lupei/GEAR]Gear is a .NET framework for building your apps.

The primary goal of Gear BPMN is to provide a notation that is readily understandable by all business users, from the business analysts who create the initial drafts of the processes, to the technical developers responsible for implementing the technology that will perform those processes, and finally, to the business people who will manage and monitor those processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process implementation.BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B business process concepts, such as public and private processes , as well as advanced modeling concepts of entities and processes.
A software system designed to fully automate content management in websites. The goal is to reduce or eliminate the intervention of programmers in editing and managing their sites. The system facilitates the organization, control and publication of documents or other content, such as multimedia images and resources, often facilitates document sharing. Allows translations from the website by adding languages and keys, and also has the ability to translate automatically using external providers. Allows you to create dynamic pages that include creating page blocks and managing them, adding themes, and adapting pages to different environments. It has functional interaction with the database, in the first phase with MSSql and PostGreSql, there is also the management of the entities in the system that are used to store the information in the site, this point is automated and often generated by the system depending on the user’s options. The main purpose is to build on a framework a much faster site than if it started from 0. Have an installer that allows the initial setup. It has many working tools with content in many formats, being as close as possible to the user. Possess the cache module for accessing information faster and render in templates, which can also be custom. Possess the notification and messaging module, so the system alerts you about system changes or actions made by other users.

The following platforms are supported:

	.NET Core 2.0+

	.NET Standard 2.0+ [https://docs.microsoft.com/en-us/dotnet/standard/net-standard]

Getting Started

	Installation

	Tehnologies

	Requirements

	Hardware Requirements

Modules

	Modules

	Core Razor Module

	Calendar Module

	Workflow Builder Module

Change logs

	Change logs

Installation

The app can be started using 3 environments:

	Development - is used for development purpose

	Stage - is used on pre- production

	Production - is used for clients, on server side

NOTE: For development use Development env
NOTE: Each configuration corresponds to a configuration file, like this: appsettings.{Env}.json

Structure of appssetings file:

{
 "SystemConfig": {
 "MachineIdentifier": ".GR.Prod"
 },
 "ConnectionStrings": {
 "Provider": "Npgsql.EntityFrameworkCore.PostgreSQL",
 "ConnectionString": "Host=127.0.0.1;Port=5432;Username=postgres;Password=Gear2019;Persist Security Info=true;Database=GEAR.PROD;MaxPoolSize=1000;"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Error"
 }
 },
 "HealthCheck": {
 "Timeout": 3,
 "Path": "/health"
 },
 "LocalizationConfig": {
 "Languages": [
 {
 "IsDisabled": false,
 "Identifier": "en",
 "Name": "English"
 },
 {
 "IsDisabled": false,
 "Identifier": "ro",
 "Name": "Romanian"
 },
 {
 "IsDisabled": true,
 "Identifier": "ru",
 "Name": "Russian"
 },
 {
 "IsDisabled": true,
 "Identifier": "it",
 "Name": "Italian"
 },
 {
 "IsDisabled": true,
 "Identifier": "fr",
 "Name": "French"
 },
 {
 "IsDisabled": true,
 "Identifier": "de",
 "Name": "German"
 },
 {
 "IsDisabled": true,
 "Identifier": "uk",
 "Name": "Ukrainian"
 },
 {
 "IsDisabled": true,
 "Identifier": "ja",
 "Name": "Japanese"
 },
 {
 "IsDisabled": true,
 "Identifier": "zh",
 "Name": "Chinese"
 },
 {
 "IsDisabled": true,
 "Identifier": "el",
 "Name": "Greek"
 },
 {
 "IsDisabled": true,
 "Identifier": "nl",
 "Name": "Dutch"
 },
 {
 "IsDisabled": true,
 "Identifier": "pl",
 "Name": "Polish"
 },
 {
 "IsDisabled": true,
 "Identifier": "es",
 "Name": "Spanish"
 }
],
 "Path": "Localization",
 "SessionStoreKeyName": "lang",
 "DefaultLanguage": "en"
 },
 "IsConfigured": true,
 "LdapSettings": {
 "ServerName": "",
 "ServerPort": 389,
 "UseSSL": false,
 "Credentials": {
 "DomainUserName": "",
 "Password": ""
 },
 "SearchBase": "",
 "ContainerName": "",
 "DomainName": "",
 "DomainDistinguishedName": ""
 },
 "WebClients": {
 "CORE": {
 "uri": "http://159.69.195.160:6969"
 },
 "BPMApi": {
 "uri": "http://159.69.195.160:6969"
 }
 },
 "RedisConnection": {
 "Host": "127.0.0.1",
 "Port": "6379"
 },
 "BackupSettings": {
 "Enabled": false,
 "UsePostGreSql": false,
 "UseMsSql": false,
 "BackupFolder": "ISODMS",
 "Interval": "24",
 "PostGreSqlBackupSettings": {
 "PgDumpPath": "C:\\Program Files\\PostgreSQL\\11\\bin\\pg_dump.exe",
 "Host": "localhost",
 "Port": "5432",
 "User": "postgres",
 "Password": "1111",
 "Database": "ISODMS.PROD",
 "FileExtension": "pgbackup"
 },
 "MsSqlBackupSettings": {
 }
 },
 "EmailSettings": {
 "Enabled": true,
 "Host": "smtp.office365.com",
 "Port": 587,
 "Timeout": 5000,
 "EnableSsl": true,
 "NetworkCredential": {
 "Email": "iso_dms.mail@indrivo.com",
 "Password": "I50_dm5.M@!1"
 }
 },
 "Sentry": {
 "Dsn": "https://a898fb5130514f2485704835f8109591@sentry.io/1547729",
 "IncludeRequestPayload": true,
 "SendDefaultPii": true,
 "MinimumBreadcrumbLevel": "Debug",
 "MinimumEventLevel": "Warning",
 "AttachStackTrace": true,
 "Debug": true,
 "DiagnosticsLevel": "Error"
 }
}

Explanation of appsettings blocks:

	SystemConfig - represent a general section that provide some global info:

	MachineIdentifier - is used for identify the app id, if is installed multiple GEAR apps, after app installation it is ovverided by generated string

	ConnectionStrings - represent databases providers configuration

	Provider - default is postgres

	Npgsql.EntityFrameworkCore.PostgreSQL - postgres ,enabled and default

	Microsoft.EntityFrameworkCore.SqlServer - enabled

	Microsoft.EntityFrameworkCore.Sqlite - for the future

	Microsoft.EntityFrameworkCore.InMemory - for the future

	Microsoft.EntityFrameworkCore.Cosmos - for the future

	Pomelo.EntityFrameworkCore.MySql - for the future

	Pomelo.EntityFrameworkCore.MyCat - for the future

	EntityFrameworkCore.SqlServerCompact40 - for the future

	EntityFrameworkCore.SqlServerCompact35 - for the future

	EntityFrameworkCore.Jet - for the future

	MySql.Data.EntityFrameworkCore - for the future

	FirebirdSql.EntityFrameworkCore.Firebird - for the future

	EntityFrameworkCore.FirebirdSql - for the future

	IBM.EntityFrameworkCore - for the future

	EntityFrameworkCore.OpenEdge - for the future

	[Logging] - see microsoft docs

	LocalizationConfig - language configurations

	IsConfigured - This property determines whether the app has been installed or not, if set to true then the configurations set in the database are taken, otherwise when accessing any page, it will be redirected to the installer

	LdapSettings - This involves configuring the AD mode

	RedisConnection - configurations for distributed cache

	Host - represent the ip address of redis connection

	Port - represent the port where is bind redis service, default: 6379

	BackupSettings - this section is used for backup module, now is developed only for postgres provider

	EmailSettings - this section is used for email client

	Enabled - set active or inactivity of service

	Host - the smptp host

	Port - the port of smtp

	Timeout - represents the time allowed for the service to wait for the message to be successfully sent

	EnableSsl - represent usage of smtp with ssl

	NetworkCredential

	Email - existent smtp email

	Password - the password of smtp email

	Sentry - consult sentry documentation [https://docs.sentry.io/platforms/dotnet/aspnetcore/] for .net core

App run

To start the app, you need:

	Restore ui packages on all razor projects (is optional step because, they are restored on build)

libman restore

	Restore C# nuget packages by typing

dotnet restore

	Build. To build, you must navigate the explorer to the path: ./src/GR.WebHosts/GR.Cms or

cd ./src/GR.WebHosts/GR.Cms

after it execute the following command:

dotnet build

	If build has run successfully, it is the green wave to start the project

dotnet run

optional for change exposed port

dotnet run --urls=http://localhost:5001/

Install steps

Note: Be sure that in appsettings{Env}.json, the IsConfigured property is set to false

	Start the application
You will be met by the following message describing the platform
[image: _images/welcome-gear.png]Welcome board
Click on Go to installation

	Configure admin profile
[image: _images/profile-gear.png]Profile tab
Settings:

	User Name - adminstrator user name

	Email - your email address to receive emails on system events

	Password and Confirm Password - the administrator password

	First Name - admin first name

	Last Name - admin last name

	Organization Name - represent the default organization name

	Set up database provider
[image: _images/db-gear.png]Configuration of database provider
Note: Use postgres default, because MsSql has not been tested for a long time, we plan support for other providers
Connection String example: Host=127.0.0.1;Port=5432;Username=postgres;Password=Gear2020;Persist Security Info=true;Database=Gear.PROD;MaxPoolSize=1000;

	Press Install button and wait until the system is installed

Tehnologies

.NET CORE 2.2, C#, MVC, JQuery, PostgreSql database, PgAdmin, javascript native,
javascript Prototype, SweetAlert2, Libman, Razor View Libraries, Modular Arhitecture,
Entity Framework, Bootstrap 4, .Net Standard, Nginx, IIS, Kestrel

Requirements

Compatibility

The framework is cross platform, thanks .net core, is compatible with Windows, Linux distributive and Mac OS.

Windows OS Requirements

To start the app you need the following packages installed:

	.Net Core SDK 2.2.402 [https://dotnet.microsoft.com/download/dotnet-core/2.2] - C# cross platform framework

	Redis [https://github.com/MicrosoftArchive/redis/releases/download/win-3.2.100/Redis-x64-3.2.100.msi] - Distributed cache soft

	Pg Admin 4 [https://www.pgadmin.org/download/pgadmin-4-windows/] - Postgres manager for interact with database

	PostgreSql [https://www.enterprisedb.com/downloads/postgres-postgresql-downloads] - Database provider

	Libman [https://docs.microsoft.com/en-us/aspnet/core/client-side/libman/libman-cli?view=aspnetcore-3.1] - UI packages provider

Ubuntu 18.04 or another OS Requirements

To start the app you need the following packages installed:

	.Net Core SDK 2.2.402 [https://docs.microsoft.com/en-us/dotnet/core/install/linux-package-manager-ubuntu-1804] - C# cross platform framework, optional link [https://www.techrepublic.com/article/how-to-install-dotnet-core-on-ubuntu-18-04/]

	Redis [https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-redis-on-ubuntu-18-04] - Distributed cache soft

	Pg Admin 4 [https://www.howtoforge.com/tutorial/how-to-install-postgresql-and-pgadmin4-on-ubuntu-1804-lts/] - Postgres manager for interact with database

	PostgreSql [https://www.digitalocean.com/community/tutorials/how-to-install-and-use-postgresql-on-ubuntu-18-04] - Database provider

	Libman [https://docs.microsoft.com/en-us/aspnet/core/client-side/libman/libman-cli?view=aspnetcore-3.1] - UI packages provider

Note: For other OS supported by .net core, consult internet sources

Hardware Requirements

OS

	Windows

	MAC OS

	Red Hat Enterprise Linux 7, 6 - 64-bit (x86_64 or amd64)

	CentOS 7 - 64-bit (x86_64 or amd64)

	Oracle Linux 7 - 64-bit (x86_64 or amd64)

	Fedora 28, 27 - 64-bit (x86_64 or amd64)

	Debian 9 (64-bit, arm32), 8.7 or later versions - 64-bit (x86_64 or amd64)

	Ubuntu 18.04 (64-bit, arm32), 16.04, 14.04 - 64-bit (x86_64 or amd64)

	Linux Mint 18, 17 - 64-bit (x86_64 or amd64)

	openSUSE 42.3 or later versions - 64-bit (x86_64 or amd64)

	SUSE Enterprise Linux (SLES) 12 Service Pack 2 or later - 64-bit (x86_64 or amd64)

	Alpine Linux 3.7 or later versions - 64-bit (x86_64 or amd64)

Hardware

To run the app you should have the following minimum requirements:

	RAM: 8+ GB (ECC/NonECC) > 1333 MHZ

	CPU: (4+) x 3 GHZ, XEON or I7 , new generations of cpu to be desired

	Storage HDD/SSD/SSHD : > 50 GB

Modules

The framework has developed the following modules:

	Module for managing dynamic entities

	Workflow manager and builder module

	Task Management Module

	Calendar module

	Synchronization component with external calendar

	Notifications module

	Document Management Module (DMS)

	User Management Module

	Role and permissions management module

	Report and Statistics Module

	The chat module

	Content management module

	Page Management module

	Forms management module

	Menu management module

	The localization module

	Authentication and authorization module

Core Razor Module

Note:This library contains System.Drawing namespace, for usage in Linux, you must install the following packages:

sudo apt install libc6-dev
sudo apt install libgdiplus

Calendar Module

Calendar is a module for the GEAR framework that allows the creation of events, inviting people to events within an organization. There is a nice interface like the Outlook application. It is possible to synchronize with providers such as Google and Outlook

Calendar Abstractions

Command line

dotnet add package GR.Calendar.Abstractions --version 1.0.3

Package Manager

PM> Install-Package GR.Calendar.Abstractions -Version 1.0.3

#Add calendar extension to GEAR

//------------------------------------Calendar Module-------------------------------------
 		config.GearServices.AddCalendarModule<CalendarManager>()
 			.AddCalendarModuleStorage<CalendarDbContext>(options =>
 			{
 				options.GetDefaultOptions(Configuration);
 				options.EnableSensitiveDataLogging();
 			})
 			.AddCalendarRazorUIModule()
 			.SetSerializationFormatSettings(settings =>
 			{
 				settings.ReferenceLoopHandling = ReferenceLoopHandling.Ignore;
 			})
 			.AddCalendarRuntimeEvents()
 			.RegisterSyncOnExternalCalendars()
 			.RegisterTokenProvider<CalendarExternalTokenProvider>()
 			.RegisterCalendarUserPreferencesProvider<CalendarUserSettingsService>()
 			.RegisterGoogleCalendarProvider()
 			.RegisterOutlookCalendarProvider(options =>
 			{
 				options.ClientId = "d883c965-781c-4520-b7e7-83543eb92b4a";
 				options.ClientSecretId = "./7v5Ns0cT@K?BdD85J/r1MkE1rlPran";
 				options.TenantId = "f24a7cfa-3648-4303-b392-37bb02d09d28";
 			})
 			.AddCalendarGraphQlApi();

Workflow Builder Module

Description

Workflow builder is a module that belongs to Gear and aims to manage states for an object.

A workflow consists of an orchestrated and repeatable pattern of business activity enabled by the systematic organization of resources into processes that transform materials, provide services, or process information It can be depicted as a sequence of operations, declared as work of a person or group, an organization of staff, or one or more simple or complex mechanisms.

The module is made on 3 layers:

	GR.WorkFlows

	GR.WorkFlows.Abstractions

	GR.Workflows.Razor

GR.WorkFlows.Abstractions contains interfaces:

	IWorkflowContext - contains the contracts with the entities, in order to use this interface is injected

	IWorkFlowCreatorService - contains the description of the workflow creation methods

	IWorkflowExecutorService - contains the description of the methods of changing transitions, states and executing actions for a particular object

Installation

To install this module you need to refer to GR.WorkFLows.Abtractions or to the library on Nuget with the same name
Example

services.RegisterGearWebApp(config =>
 {
//--------- some configuration ------------
//-------------------------------------Workflow module-------------------------------------
 config.GearServices.AddWorkFlowModule<WorkFlow, WorkFlowCreatorService, WorkFlowExecutorService>()
 .AddWorkflowModuleStorage<WorkFlowsDbContext>(options =>
 {
 options.GetDefaultOptions(Configuration);
 options.EnableSensitiveDataLogging();
 })
 .AddWorkflowRazorModule();

//--------- another modules ------------

WorkFlowCreatorService, WorkFlowExecutorService are the classes that have the basic implementation for the behavior of a workflow, they implement IWorkFlowCreatorService and IWorkFlowExecutorService, so if you want the basic implementation you need to use GR.WorkFlows. At your choice you can inherit these classes and override the methods

Register entity contract

In order to be able to use workflow manger for an object it is necessary to create a contract for an entity. For this we use the interface IWorkflowExecutorService
Here we use the method:

Task<ResultModel<Guid>> RegisterEntityContractToWorkFlowAsync([Required] string entityName, Guid? workFlowId);

Parameters:

	entityName -> represents the name of the entity, in this version there is no close connection with the entity from the database and this one from the workflow, we chose a more abstract way so that we do not have dependents and can be more generic

	workFlowId -> represents the id of a workflow already created using the ui builder (id belongs to the WorkFlow entity)

Also a contract can be registered using IServiceCollection
Example:

config.GearServices.RegisterWorkFlowContract(nameof(DocumentVersion), Guid.Empty);

Workflow Actions

Workflow actions are post actions that are executed when changing a state for an object
To create an action we must create a class that inherits from BaseWorkFlowAction, it contains an abstract method InvokeExecuteAsync that receives as a parameter a Dictionary parameter Dictionary<string, string>. This method will be called when the action is invoked to change the state of an object, of course this action must be attached to the appropriate transition.

Base action

 public abstract class BaseWorkFlowAction
 {
 #region Injectable

 /// <summary>
 /// Executor
 /// </summary>
 protected readonly IWorkFlowExecutorService Executor;

 #endregion

 /// <summary>
 /// Entry state
 /// </summary>
 protected EntryState EntryState { get; set; }

 /// <summary>
 /// Current transition
 /// </summary>
 protected Transition CurrentTransition { get; set; }

 /// <summary>
 /// Next transitions
 /// </summary>
 protected IEnumerable<Transition> NextTransitions { get; set; }

 /// <summary>
 /// Constructor
 /// </summary>
 /// <param name="entry"></param>
 /// <param name="currentTransition"></param>
 /// <param name="nextTransitions"></param>
 protected BaseWorkFlowAction(EntryState entry, Transition currentTransition, IEnumerable<Transition> nextTransitions)
 {
 EntryState = entry;
 CurrentTransition = currentTransition;
 NextTransitions = nextTransitions;
 Executor = IoC.Resolve<IWorkFlowExecutorService>();
 }

 /// <summary>
 /// Execute
 /// </summary>
 /// <returns></returns>
 public abstract Task InvokeExecuteAsync(Dictionary<string, string> data);
 }

Example of send notifications actions

 public class SendNotificationAction : BaseWorkFlowAction
 {
 #region Injectable

 /// <summary>
 /// Inject notifier
 /// </summary>
 private readonly INotify<GearRole> _notify;

 #endregion

 public SendNotificationAction(EntryState entry, Transition transition, IEnumerable<Transition> nextTransitions) : base(entry, transition, nextTransitions)
 {
 _notify = IoC.Resolve<INotify<GearRole>>();
 }

 /// <summary>
 /// Execute data
 /// </summary>
 /// <param name="data"></param>
 /// <returns></returns>
 public override async Task InvokeExecuteAsync(Dictionary<string, string> data)
 {
 var rolesForPrevTransition = await Executor.GetAllowedRolesToTransitionAsync(CurrentTransition);
 var subject = "Entry x";
 if (data.ContainsKey("Name")) subject = data["Name"];
 await _notify.SendNotificationAsync(rolesForPrevTransition, new Notification
 {
 Subject = $"{subject} state changed",
 Content = $"{subject} has changed its status from {CurrentTransition?.FromState?.Name} to {CurrentTransition?.ToState?.Name}",
 SendLocal = true,
 SendEmail = true,
 NotificationTypeId = NotificationType.Info
 }, EntryState.TenantId);

 foreach (var nextTransition in NextTransitions)
 {
 var rolesForNextTransition = await Executor.GetAllowedRolesToTransitionAsync(nextTransition);

 await _notify.SendNotificationAsync(rolesForNextTransition, new Notification
 {
 Subject = "You have new actions",
 Content = $"{subject} can be switched to {nextTransition?.ToState.Name} state",
 SendLocal = true,
 SendEmail = true,
 NotificationTypeId = NotificationType.Info
 }, EntryState.TenantId);
 }
 }
 }

The registration of an action is done in the following way:

 services.RegisterWorkflowAction<TActionClass>();

Note: TActionClass need to inherit BaseWorkFlowAction

Injecting services into action handlers

The injection of services can only be done through Castle Windsor, an example of injection

IoC.Resolve<TService>();

Note: This service must first be registered using IoC service registration methods

The structure of a workflow

A workflow has the following structure :

	Name - the name of your workflow

	Description - some description about it

	Enabled - represent if it is active for usage

	States - represent a list of states that caracterize it

	Transitions - represent transitions between states

A state has the following structure:

	Name - unique name for some workflow that will be displayed on usage

	Description - something descriptive

	IsStartState - represents the initial state that will be set for an object, note: only one start state can exist

	IsEndState - represents the last state of an object

	AdditionalSettings - they are used for store some settings as a dictionary (ex: we store here the position x and y on the builder canvas)

A transition has the following structure:

	Name - abstract name that identify the transition

	FromState - is the start point for a transition, ex: the first transition has FromState value of the first state of a workflow

	ToState - is the end point for entry transition

	Actions - actions are the handlers that will be executed after the state of object will be changed to another, regulary in this system actions are classes that are use to execute some actions for state change

	AllowedRoles - here we store the user roles that can do this change of transition

The structure of entry that use workflows

For store the state of an object we use an Entry State entity that have the following structure:

	Contract - represents the id of contract of entity and workflow

	EntryId - represents the id of object

	State - represents the current state of object

	Message - represents the message that will be changed on state change

We store history of object states in EntryStateHistory, this entity has the following structure:

	EntryState - store the id of entry state

	FromState - store the precedent state of entry

	ToState - store the current state that is set in EntryState

	Message - represents the message that is set when the state of the object changes

License

MIT

Change logs

v.1.9.4 - Lupei Nicolae May 2020

	add user activity module

	add phone verification module

	bug fixing

	add new extensions

	fix pagination extension

	refact core

	add new events for modules

	refact identity modules

	add model validator

	add new validation attributes

	refact naming

	add auth for notification hub

	add support for external devices to hub

	add error prevent with custom message on json api

	add support for multiple authentification types simultaneous

	add database for ip tracking

	add helper for parse and validate phone numbers

	add 2factor auth service with phone number

	fix user address service

	use and create mappers for dto

	add api for user

	remove districts from localization module

	add structure for read docs reading

	refact docs files

	generate xml comments for all projects and bind on swagger

	add configuration to generate xml comments

v.1.9.3 - Lupei Nicolae April 2020

	separe groups module from identity

	separe user profile module from identity

	separe permissions from identity

	separe country module from identity

	create custom permissions registrator

	create permissions configurations for some modules

	create identity.clients module from identityServer4

	create custom contexts for identityServer4 and custom registration

	add menu initializers

v.1.9.2 - Lupei Nicolae 16 March 2020

	develop ui module for database backup

	remove unused features

	add database provider for localization (beta)

	fix warning (too long file names)

	refactoring cache module

	identity from string to guid

	add seq logging provider

	refactoring logging provider

	add menu initialiazers for dashboard, notification, report modules

	refactoring controllers

v1.9.1 - Lupei Nicolae 13 March 2020

	clean iso infrastructure

v1.9.0 - Lupei Nicolae 13 March 2020

	files module

	documents module

	commerce module

	bug fixing

v1.8.0 - Lupei Nicolae 01 February 2020

	bug fixing

v1.7.0 - Lupei Nicolae 01 January 2020

	bug fixing

v1.0.0 - Lupei Nicolae 13 February 2019

	identity module

	entities module

	forms module

Index

 _images/profile-gear.png
Welcome to GEAR BPM Installer

Installer

Install system

Choose profile

Super admin Info

User Name

admin

This is user nam
Email
admin@admin.com

This is email

Password

_images/welcome-gear.png

_images/db-gear.png
Welcome to GEAR BPM Installer

Installer

Set up database

MssaL

o

POSTGRESQL

Database connection

Host=78.47.92.200:Port=5432;Username=postgres;Password=Gear201$

Install system

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Gear 1.9.4

 		
 Installation

 		
 Explanation of appsettings blocks:

 		
 App run

 		
 Install steps

 		
 Tehnologies

 		
 Requirements

 		
 Compatibility

 		
 Windows OS Requirements

 		
 Ubuntu 18.04 or another OS Requirements

 		
 Hardware Requirements

 		
 OS

 		
 Hardware

 		
 Modules

 		
 Core Razor Module

 		
 Calendar Module

 		
 Calendar Abstractions

 		
 Command line

 		
 Package Manager

 		
 Workflow Builder Module

 		
 Description

 		
 Installation

 		
 Register entity contract

 		
 Workflow Actions

 		
 The registration of an action is done in the following way:

 		
 Injecting services into action handlers

 		
 The structure of a workflow

 		
 The structure of entry that use workflows

 		
 License

 		
 Change logs

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

